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3 Singularities

3.1 Zeros

De�nition 3.1. Let D ⊆ C be a region, z0 ∈ D and f ∈ O(D) such that
f(z0) = 0. We say that f has a zero of order n at z0 i� there exists g ∈ O(D)
such that g(z0) 6= 0 and f(z) = (z − z0)ng(z) for all z ∈ D.

Proposition 3.2. Let D ⊆ C be a region, z0 ∈ D and f ∈ O(D) such that

f(z0) = 0. If f is not constant, then there exists a unique n ∈ N such that f
has a zero of order n at z0. Moreover, n = inf{k ∈ N : f (k)(z0) 6= 0}.

Proof. Exercise.

Proposition 3.3 (Fundamental Theorem of Algebra). Let n ∈ N and p(z) =∑n
k=0 ckz

k be a polynomial of degree n (i.e., cn 6= 0). Then, there are con-

stants a1, . . . , an ∈ C such that p factorizes as

p(z) = cn(z − a1) · · · (z − an).

Proof. Exercise.[Hint: First show the existence of one zero and factorize it,
then proceed recursively.]

Theorem 3.4. Let D ⊆ C be a region, f ∈ O(D) such that it has distinct

zeros a1, . . . , am ∈ D with orders n1, . . . , nm. Suppose γ is a closed path in

D \ {a1, . . . , an} such that Intγ ⊂ D. Then,

m∑
k=1

nkIndγ(ak) =
1

2πi

∫
γ

f ′(z)
f(z)

dz.

Proof. Knowing the zeros, we can factorize f as

f(z) = (z − a1)n1 · · · (z − am)nmg(z),

where g ∈ O(D) has no zeros in D. Using the product rule for the derivative
we �nd,

f ′(z)
f(z)

=
g′(z)
g(z)

+
m∑

k=1

nk

z − ak
.

The term g′/g on the right hand side is a holomorphic function in D. So,
by Theorem 2.43 its integral along γ vanishes. The second term yields the
desired sum over the indices of the ak.
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Exercise 27. Let D ⊆ C be a region and a ∈ D. For a function f ∈ O(D)
we denote by na(f) the order of its zero at a. (If f(a) 6= 0 then na(f) = 0.)
For all f, g ∈ O(D) show the following:

1. na(fg) = na(f) + na(g).

2. na(f + g) ≥ min{na(f), na(g)} and equality if na(f) 6= na(g).

3.2 Singularities

De�nition 3.5. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}).
Then, we say that f has an isolated singularity at a. Moreover, a is called a
removable singularity i� f can be extended to a holomorphic function on all
of D.

We have already seen criteria for identifying removable singularities in
the Riemann Continuation Theorem (Theorem 2.28).

De�nition 3.6. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). We
say that a is a pole of f i� f diverges at a, i.e. if for any M > 0 there exists
r > 0 such that |f(z)| > M for all z ∈ Br(a) \ {a}. We say that a is an
essential singularity of f i� a is not removable and is not a pole.

We now consider poles.

Proposition 3.7. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}).
Suppose that a is a pole of f . Then, there exists a unique m ∈ N such that

there is a g ∈ O(D) with g(a) 6= 0 and

f(z) =
g(z)

(z − a)m
∀z ∈ D \ {a}.

Proof. Since f has a pole at a there exist r > 0 such that Br(a) ⊆ D and
f(z) 6= 0 for all z ∈ Br(a) \ {a}. Thus we can de�ne h ∈ O(Br(a) \ {a}) by
h(z) := 1/f(z). But limz→a h(z) = 0, so by Theorem 2.28, a is a removable
singularity of h and h can be extended to a holomorphic function on all of
Br(a). By Proposition 3.2 there exists a unique m ∈ N such that h(z) =
(z − a)mk(z), where k ∈ O(Br(a)) and k(a) 6= 0. Moreover, k(z) 6= 0 for
all z ∈ Br(a) so we can invert it, de�ning g ∈ O(Br(a)) by g(z) = 1/k(z).
But notice that g(z) = (z − a)mf(z) for all z ∈ Br(a) \ {a}, which obviously
extends to a holomorphic function on D \ {a}. So g really extends to a
holomorphic function on all of D. Observe also that g(a) 6= 0. This completes
the proof.
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De�nition 3.8. Let D ⊆ C be a region, a ∈ D, f ∈ O(D \ {a}) such that
a is a pole of f . Then, the integer m ∈ N such that g(z) := (z − a)mf(z)
extends to a holomorphic function in D with g(a) 6= 0 is called the order of
the pole. If m = 1 we also say that the pole is simple.

Proposition 3.9. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \{a}) with a

pole at a of order m. Then, is a function g ∈ O(D) and there are constants

b1, . . . , bm ∈ C with bm 6= 0 such that

f(z) = g(z) +
m∑

n=1

bn

(z − a)n
∀z ∈ D \ {a}.

Proof. Exercise.

The second term on the right hand side of the equation above is also
called the singular part of f at a.

We now turn to essential singularities. In some sense they are more �wild�
than poles, as shows the following Theorem.

Theorem 3.10 (Casorati, Weiserstrass). Let D ⊆ C be a region, a ∈ D and

f ∈ O(D \ {a}). The following statements are equivalent:

1. The point a is an essential singularity of f .

2. For every neighborhood U ⊆ D of a the set f(U \ {a}) is dense in C.

3. There exists a sequence {zn}n∈N in D \ {a} such that limn→∞ zn = a,
but {f(zn)}n∈N has no limit in C ∪ {∞}.

Proof. We start with the implication 1.⇒2. Assume the contrary of 2. Let
U ⊆ D be a neighborhood of a such that f(U \ {a}) is not dense in C.
Thus, there exists p ∈ C and r > 0 such that f(U \ {a}) ∩ Br(p) = ∅.
This implies |f(z) − p| ≥ r for all z ∈ U \ {a}. De�ne g ∈ O(U \ {a})
by g(z) := 1/(f(z) − p). Then, |g(z)| ≤ 1/r for all z ∈ U \ {a} so by
Theorem 2.28, g has a removable singularity at a. Thus, c := limz→a g(z)
exists. If c 6= 0, f(z) = q + 1/g(z) is bounded near a and thus has a
removable singularity at a. If c = 0, then limz→a |f(z)| = ∞ and f has a
pole at a. In both cases, a is not an essential singularity, contradicting 1.
Exercise.Complete the proof.
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Exercise 28. Find and classify the isolated singularities of the following
functions and specify the order in case of a pole:

1.
z4

(z4 + 16)2
2.

1 − cos(z)
sin z

3. exp(1/z) 4.
1

cos(1/z)

Exercise 29. Let f be a function that is holomorphic on C except for poles.
Show that the set of poles cannot have an accumulation point.

Exercise 30. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). Show
that if a is a non-removable singularity of f , then exp ◦f ∈ O(D \ {a}) has
an essential singularity at a.

Exercise 31. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). Let
P ∈ O(C) be a non-constant polynomial. Show that f and P ◦ f have the
same type of singularity at a.

3.3 Laurent Series

The representation of a holomorphic function with a pole as in Proposi-
tion 3.9 can be written as an �extended� power series that starts not with
the power 0, but with the power −n. Indeed, we will see that even essential
singularities can be captured by such an �extended� power series, if we start
at −∞. Such series are called Laurent series.

Let z ∈ C and 0 < r1 < r2. In the following we use the notation

Ar1,r2(z) := Br2(z) \ Br1(z).

This type of region is called an (open) annulus. Note the special case of the
punctured disk A0,r(z) = Br(z) \ {z}.

De�nition 3.11. Let {an}n∈Z be an indexed set of complex numbers. We
say that

∑
n∈Z an converges (absolutely) i�

∑∞
n=0 an and

∑∞
n=1 a−n both

converge (absolutely). Let S be a set and {fn}n∈Z be an indexed set of
functions fn : S → C. We say that

∑
n∈Z fn converges uniformly i�

∑∞
n=0 fn

and
∑∞

n=1 f−n both converge uniformly.

Proposition 3.12. Let {cn}n∈Z be an indexed set of complex numbers. De-

�ne r1, r2 ∈ [0,∞] via

r1 := lim sup
n→∞

|c−n|1/n and 1/r2 := lim sup
n→∞

|cn|1/n.
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I� r1 < r2 then the Laurent series

f(z) =
∑
n∈Z

cnzn

converges absolutely for all z ∈ Ar1,r2(0) and uniformly on Aρ1,ρ2(0) where

r1 < ρ1 < ρ2 < r2. Moreover, it diverges for z ∈ C \ Ar1,r2(0).

Proof. Exercise.[Hint: Split the series into the parts with positive and neg-
ative indices and apply Lemma 1.14.]

Proposition 3.13. Let D ⊆ C be a region, z0 ∈ C and 0 ≤ r1 < r2 such

that Ar1,r2(z0) ⊂ D. Then, for all f ∈ O(D) we have,∫
∂Br1 (z0)

f =
∫

∂Br2(z0)
f.

Moreover, for all z ∈ Ar1,r2(z0) we have,

f(z) =
1

2πi

∫
∂Br2 (z0)

f(ζ)
ζ − z

dζ − 1
2πi

∫
∂Br1 (z0)

f(ζ)
ζ − z

dζ

Proof. Exercise.

Theorem 3.14 (Laurent Decomposition). Let z0 ∈ C and 0 ≤ r1 < r2 ≤ ∞
and f ∈ O(Ar1,r2(z0)). Then, there exists a unique pair of holomorphic

functions f+ ∈ O(Br2(z0)) and f− ∈ O(C \ Br1(z0)) such that

f(z) = f+(z) + f−(z), ∀z ∈ Ar1,r2(z0) and lim
|z|→∞

f−(z) = 0

Proof. For any r1 < s < r2 de�ne fs : C \ ∂Bs(z0) → C via

fs(z) :=
1

2πi

∫
∂Bs(z0)

f(ζ)
ζ − z

dζ,

By Lemma 2.42, fs is holomorphic. Now de�ne f+ : Br2(z0) → C as follows.
For a given z choose r1 < s < r2 such that |z| < s and set f+(z) := fs(z).
Proposition 3.13 ensures that this de�nition does not depend on the choice
of s. Moreover, it is clear that this de�nes a holomorphic function. Similarly,
we de�ne f− : C \ Br1(z0) → C as follows. For a given z choose r1 < s < r2

such that s < |z| and set f−(z) := −fs(z). Again, this de�nition does not
depend on the choice of s and f− is holomorphic.
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Now let z ∈ Ara,r2(z0) and choose s1, s2 such that r1 < s1 < |z| < s2 <
r2. Then, by Proposition 3.13 we have,

f(z) =
1

2πi

∫
∂Bs2(z0)

f(ζ)
ζ − z

dζ − 1
2πi

∫
∂Bs1 (z0)

f(ζ)
ζ − z

dζ = f+(z) + f−(z).

Fix r1 < s < r2 and choose ε > 0. Now if

|z| >
‖f‖∂Bs(z0)

ε
+ s + |z0|,

then we have |f−(z)| < ε by an application of the integral estimate of Propo-
sition 2.7. Thus lim|z|→∞ f−(z) = 0.

To see uniqueness suppose there is another pair of holomorphic functions
g+ ∈ O(Br2(z0)) and g− ∈ O(C \ Br1(z0)) with the same properties. Then,
h(z) := f+(z)−g+(z) de�nes a holomorphic function on Br2(z0). Moreover,
for z ∈ Ar1,r2(z0) we also have h(z) = g−(z) − f−(z). But the latter are

even de�ned on C \ Br1(z0). So h extends to an entire function. But,
lim|z|→∞ h(z) = lim|z|→∞ g−(z) − lim|z|→∞ f−(z) = 0. So by Liouville's
Theorem (Theorem 2.35) h must be constant and therefore can only be
equal to zero.

De�nition 3.15. In the above Theorem, f+ is called the regular part of f
while f− is called the principal or singular part of f .

Theorem 3.16 (Laurent Series). Let z0 ∈ C and 0 ≤ r1 < r2 and f ∈
O(Ar1,r2(z0)). Then, there exist a unique set of coe�cients {cn}n∈Z such

that

f(z) =
∑
n∈Z

cn(z − z0)n,

where the series converges absolutely for all z ∈ Ar1,r2(z0) and uniformly on

As1,s2(z0), when r1 < s1 < s2 < r2. Also, the coe�cients are given by

cn =
1

2πi

∫
∂Bs(z0)

f(ζ)
(ζ − z0)n+1

dζ,

where r1 < s < r2.

Proof. We use the decomposition f = f+ + f− of Theorem 3.14. De�ne
g ∈ O(B1/r1

(0) \ {0}) via

g(z) := f−
(

1
z

+ z0

)
.
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Since lim|z|→∞ f−(z) = 0 it follows that limz→0 g(z) = 0. In particular, g
has a continuous extension to B1/r1

(0) and thus a holomorphic one by the
Riemann Continuation Theorem (Theorem 2.28). Consider its power series
expansion

g(z) =
∞∑

n=1

bnzn,

which converges pointwise in B1/r1
(0) and uniformly in B1/s1

(0) for any
s1 > r1. Thus

f−(z) = g

(
1

z − z0

)
=

∞∑
n=1

bn(z − z0)−n

converges pointwise in C \ Br1(z0) and uniformly on C \ Bs1(z0) for any
s1 > r1. On the other hand, the power series expansion

f+(z) =
∞∑

n=0

cn(z − z0)n

converges pointwise in Br2(z0) and uniformly on Bs2(z0) for any 0 < s2 < r2.
Summing both expansions and setting c−n := bn for all n ∈ N yields the
Laurent series with the desired properties.

Set r1 < s < r2. We use the formula

1
2πi

∫
∂Bs(z0)

(ζ − z0)k dζ =

{
1 if k = −1
0 if k ∈ Z \ {−1}

(which follows for example from Theorems 2.22 and 2.43) together with
convergence of the Laurent series and interchangeability of limit and integral
(Proposition 2.8) to obtain the desired formula for the coe�cients cn.

Proposition 3.17. Let D ⊆ C be a region, a ∈ D and f ∈ O(D \ {a}). Let
r > 0 such that A0,r(a) ⊂ D. Let

f(z) =
∑
n∈Z

cn(z − a)n

be the Laurent series for f in A0,r(a). Then,

1. a is a removable singularity of f i� cn = 0 for all n < 0.

2. a is a pole of order m of f i� c−m 6= 0 and cn = 0 for all n < −m.
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3. a is an essential singularity of f i� there exist in�nitely many n < 0
such that cn 6= 0.

Proof. Exercise.

Exercise 32. Let f ∈ O(C \ {0, 1, 2}) be given by

f(z) :=
1

z(z − 1)(z − 2)
.

Give the Laurent series expansion of f in the following regions: A0,1(0),
A1,2(0), A2,∞(0).

Exercise 33. Give the Laurent series expansion of z 7→ exp(1/z).

Exercise 34. Investigate how the di�erent types of singularities behave with
respect to addition, multiplication, quotienting and composition (whenever
the corresponding operations make sense)!

3.4 Meromorphic Functions

De�nition 3.18. Let D ⊆ C be a region and A ⊂ D a discrete and relatively
closed subset. Then, f ∈ O(D\A) is calledmeromorphic in D if all points a ∈
A are either removable singularities or poles of f . The set of meromorphic
functions in D is denoted by M(D).

Proposition 3.19. Let D ⊆ C be a region. Then, the set M(D) forms a

vector space over C and moreover forms a �eld. That is, sums, scalar mul-

tiples, products and quotients of meromorphic functions are meromorphic.

(Except the quotient by the zero function.)

Proof. Exercise.

Exercise 35. Show that the set of rational functions forms a proper sub�eld
of M(C).

Theorem 3.20 (Argument Principle). Let D ⊆ C be a region, f ∈ M(D).
Suppose Z ⊂ D is the set of zeros of f and P ⊂ D is the set of poles of f .
Suppose γ is a closed path in D \ (Z ∪ P ) such that Intγ ⊂ D. Then,∑

z∈Z

N(z)Indγ(z) −
∑
z∈P

N(z)Indγ(z) =
1

2πi

∫
γ

f ′(z)
f(z)

dz,

where N(z) is the order of the zero or pole z.
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Proof. Exercise.[Hint: Generalize the proof of Theorem 3.4.]

Theorem 3.21 (Rouché's Theorem). Let D ⊆ C be a region and f, g ∈
M(D). Let Zf , Zg ⊂ D be the sets of zeros of f and g and Pf , Pg ⊂ D the

sets of poles of f and g. Let γ be a closed path such that |γ| ∈ D \ (Pf ∪ Pg)
and Intγ ⊂ D. Suppose that

|f(ζ) + g(ζ)| < |f(ζ)| + |g(ζ)| ∀ζ ∈ |γ|.

Then,∑
z∈Zf

N(z)Indγ(z)−
∑
z∈Pf

N(z)Indγ(z) =
∑
z∈Zf

N(z)Indγ(z)−
∑
z∈Pg

N(z)Indγ(z),

where N(z) denotes the order of the zero or pole z.

Proof. First, note that the inequality also implies |γ|∩Zf = ∅ and |γ|∩Zg =
∅. Set U := D \ (Zf ∪ Zg ∪ Pf ∪ Pg) and h(z) := f(z)/g(z) for all z ∈ U .
Then, h ∈ O(U). Note that the hypothesis is equivalent to the inequality

|h(z) + 1| < |h(z)| + 1 ∀z ∈ |γ|.

This inequality implies that h(z) cannot be a non-negative real number (since
in that case there would be equality). That is, h(z) ∈ C \ R+

0 for all z ∈ |γ|.
But since |γ| is compact there must a neighborhood V ⊆ U of |γ| such that
h(z) ∈ C \ R+

0 for all z ∈ V . Now, C \ R+
0 is star-shaped so that z 7→ 1/z

is integrable there (Corollary 2.15), i.e., has a primitive l ∈ O(C \ R+
0 ).

(l is in fact a branch of the logarithm.) But l ◦ h ∈ O(V ) is a primitive of
h′/h ∈ O(V ), so the integral of h′/h along |γ| vanishes (by Proposition 2.11).
This means,

0 =
∫

γ

h′(z)
h(z)

dz =
∫

γ

f ′(z)
f(z)

dz −
∫

γ

g′(z)
g(z)

dz.

The result follows then from Theorem 3.20.

Exercise 36. Let D,D′ ⊆ C be regions such that D′ ⊂ D. Consider the
linear map O(D) → O(D′) induced by the restriction of functions on D to
D′. (a) Show either that this map must be injective or that it cannot be
injective. (b) Show either that this map must be surjective or that it cannot
be surjective.
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Exercise 37. Let D ⊆ C be a bounded region. De�ne Õ(D) ⊆ O(D) to be
the set of holomorphic functions f on D such that f extends to a holomorphic
function on some open neighborhood of D. Likewise, de�ne M̃(D) ⊆ M(D)
to be the set of meromorphic functions f on D such that f extends to a
meromorphic function on some neighborhood of D. (a) Show that Õ(D) is
a proper vector subspace of O(D). Likewise, show that M̃(D) is a proper
sub�eld of M(D). (b) Show that M̃(D) is the quotient �eld of Õ(D). In
other words, show that for every element f ∈ M̃(D) there exist elements
g, h ∈ Õ(D) such that f = g/h. (c) Comment on the possible problems that
would appear if one replaces in this exercise Õ(D) with O(D) and M̃(D)
with M(D).

Exercise 38. Let D ⊆ C be a region such that B1(0) ⊂ D and f ∈ O(D).
Suppose |f(z)| < 1 for all z ∈ ∂B1(0). Show that f has precisely one �xed
point in B1(0).

Exercise 39. Determine the number of zeros (counted with order) of the
following functions in the speci�ed domain:

1. z5 + 1
3z3 + 1

4z2 + 1
3 in B1(0) and in B1/2(0).

2. z5 + 3z4 + 9z3 + 10 in B1(0) and B2(0).

3. 9z5 + 5z − 3 in A1/2,5(0).

4. z8 + z7 + 4z2 − 1 in B1(0) and B2(0).

3.5 Residues

De�nition 3.22. Let a ∈ C and 0 < r, f ∈ O(Br(a) \ {a}) and

f(z) =
∑
n∈Z

cn(z − a)n

the Laurent series of f at a. Then, Res(f, a) := c−1 is called the residue of
f at a.

Theorem 3.23 (Residue Theorem). Let D ⊆ C be a region, A ⊂ D a

discrete and relatively closed subset, and f ∈ O(D \ A). Let γ be a closed

path with |γ| ⊂ D \ A and Intγ ⊂ D. Then,∑
a∈A

Res(f, a)Indγ(a) =
1

2πi

∫
γ
f(z) dz.
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Proof. De�ne Ã := Intγ ∩A. This is �nite since Intγ ∪ |γ| is compact. Thus,
suppose Ã = {a1, . . . , an}. Observe that the sum in the statement really
only runs over Ã, since the index of the other elements of A vanishes. Now,
decompose f into a sum

f(z) = f1(z) + · · · + fn(z) + g(z) ∀z ∈ D \ A,

where fk ∈ O(C \ {ak}) and g ∈ O((D \ A) ∪ Ã) as follows. Let f1 be
the singular part f− of f at a1 (according to Theorem 3.14). In particular
Res(f, a1) = Res(f1, a1). Note that f−f1 has one singularity less than f (the
one at a1) and moreover Res(f, ak) = Res(f−f1, ak) for all k > 1. Now, take
f2 to be the singular part of f−f1 at a2 etc. Finally, let g := f−f1−· · ·−fn

and notice that g has no singularities in Intγ left. Note that the integral over
g along γ vanishes by Theorem 2.43. Thus, the Theorem reduces to proving
the identity,

Res(h, a)Indγ(a) =
1

2πi

∫
γ
h(z) dz

for functions h ∈ O(C \ {a}) such that lim|z|→∞ h(z) = 0. Consider the
Laurent series of h around a,

h(z) =
−1∑

n=−∞
cn(z − a)n.

Since this converges uniformly on the compact set |γ|, we can interchange
integration and summation,∫

γ
h(z) dz =

−1∑
n=−∞

cn

∫
γ
(z − a)n dz.

Now note that (z − a)n has a primitive if n ≤ −2, i.e., is then integrable in
C \ {a}. Thus, by Proposition 2.11 its integral vanishes. Hence,∫

γ
h(z) dz = c−1

∫
γ
(z − a)−1 dz = Res(h, a)2πiIndγ(a).

This completes the proof.

Exercise 40. Let D ⊆ C be a region and a ∈ D. Let g, h ∈ O(D) such that
g(a) 6= 0 and h(a) = 0, but h′(a) 6= 0. Show that f := g/h ∈ M(D) has a
simple pole at a and,

Res(f, a) =
g(a)
h′(a)

.
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Exercise 41. Calculate the following integrals:

1.

∫ ∞

0

x2

x4 + x2 + 1
dx 2.

∫ ∞

0

cos(x) − 1
x2

dx

3.

∫ π

0

cos(2θ)
1 − 2a cos(θ) + a2

dθ, a2 < 1 4.

∫ π

0

1
(a + cos(θ))2

, a > 1

Exercise 42. Show that the following identities hold:

1.

∫ ∞

0

1
1 + x2

dx =
π

2
2.

∫ ∞

0

1
(x2 + a2)2

dx =
π

4a3
, a > 0


